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Abstract
The ballistic model of collisional absorption in the presence of an intense laser
field is exposed and the resulting collision frequencies are shown to be in
good agreement with those obtained from the dielectric model. Advantages in
favor of the ballistic model and shortcomings of both are discussed. Misleading
physical interpretations from the dielectric model are shown to have their origin
in a partially inadequate mathematical treatment.

PACS numbers: 42.25.Bs, 52.38.−r, 45.50.Tn

1. Introduction

In a plasma of ions of charge Z and density ni a current of density j = −eneu (e electron
charge, u mean electron velocity, ne = Zni) is attenuated by the deflection of single electrons
in the Coulomb field of single ions, and kinetic electron energy is converted into heat by
friction. When an alternating field of frequency ω is applied, e.g. by irradiating the plasma
by a laser under steady-state condition, the cycle-averaged quantity jE,E applied laser field
represents the true dissipation. At a given time instant only part of the work jE goes into heat
by friction, the remaining fraction leading to a change of the kinetic energy of the electron
fluid.

In a laser field of arbitrary strength cycle-averaged absorption has been calculated,
classically first in the so-called dielectric model (DM), i.e. electrons treated as a fluid, by
Silin [1] and later by Dawson and Oberman [2], Jones and Lee [3] Decker et al [4] and others,
and alternatively in the so-called ballistic model (BM, momentum loss of single electrons to
screened ions) by Pert [5] and the present authors [6] and others. The numerous quantum
treatments are mostly presented in the DM by Kremp et al and Bonitz et al (Kadanoff–Baym
formalism [7]) and by Kull and Plagne (quantum Vlasov equation [8]); cycle-averaged ballistic
treatments are presented, among others, by Shima and Yatom [9] and Silin and Uryupin [10].
Equivalently to jE a cycle-averaged electron–ion collision frequency νei can be introduced
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by the Drude ansatz

du

dt
+ νeiu = − e

me

E, (1)

where νei is in general E-dependent. By multiplying (1) by u and averaging over one cycle
ω under steady-state conditions one arrives at νei = jE/2neE os with Eos the mean oscillation
energy of the single electron. In a wide range of parameters νei � ω holds and hence, the
oscillation velocity u = vos can be assumed to be sinusoidal and Eos = mev̂

2
os

/
4, v̂os amplitude.

In the DM the quantity jE reads for an isotropic electron distribution function f (ve) in terms
of the Bessel functions Jl , plasma frequency ωp and the quantum dielectric function εq(k, ω)

as [7],

jE = Zmeω
4
p

π2v̂os

∫ ∞

0

dk

k
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kD

,
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,
v̂os

vth

)
, F = ω2

ω2
p
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l=1

l
�εq(k, ilω)

|εq(k, ilω)|2
∫ kv̂os

ω

0
dξ J 2

l (ξ ).

(2)

Asymptotic formulae have been derived for a Maxwellian distribution function f (ve) = fM(ve)

for small and large ratios w = v̂os/vth, vth mean thermal velocity:

w � 1 : νei = 4

3
(2π)1/2

(
Ze2

4πε0me

)
1

v3
th

ln �S, �S = vth/ω

λB

w � 3 : Silin νei = 2C

(
1 + ln

v̂os

2vth

)
ln �S, C = meω

4
p

v̂3
os

Shima and Yatom νei = C ln
2v̂os

vth

(
ln �S + ln

2v̂os

vth

)
(3)

Kull and Plagne νei = 2C ln
v̂os

vth

ln(
√

2�S

√
v̂os/vth).

Equation (2) looks rather complex. In particular the question of convergence arises. At
large drift velocities v̂os up to 103 Bessel functions must be summed up to obtain an
accurate result. To remove the differential operators ∂/∂t and nabla from the original kinetic
equation transformation to Fourier space is done which, as a consequence, necessitates the
decomposition of the anharmonic time dependence exp(i cos ωt) into a complete set of Bessel
functions. Loss of direct physical insight is the consequence. In addition, the underlying
collision physics is obscured by the Fourier decomposition in k. In its nature a collision is
short in comparison to the laser period ω. To decompose it into functions of kx of constant
amplitude is inadequate. In transport theory time dependent quantities are of interest, e.g.,
heating function j(t)E(t) − 1/2mene dv2

os

/
dt at low frequency omega. It is a hopeless

enterprise to evaluate it in the framework of the standard dielectric theory owing to the
appearance of an infinite double sum of products JlJn. Searching for a more appropriate
description, i.e., a more adequate basis than plane waves may represent a challenging problem
of mathematical physics. Expressions (3) differ from each other. What is the range of validity
of the fits? The Spitzer–Silin-like Coulomb logarithm ln �S containing the thermal velocity
and no drift as well as the double logarithm ln w ln �S = ln

(
�ln w

S

)
needs explanation about

their physical origin. The BM exposed in the following will represent a significant step into
the right physical direction.
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Figure 1. Composition of total velocity v = vos(t), three examples. ve taken from f (ve).

2. The ballistic model

2.1. Momentum loss of a single electron

Collisions of individual electrons with a fixed ion of charge number Z are considered. The
momentum loss along the original electron trajectory due to deflection is calculated and the
result is averaged over all impact parameters b and all velocities v(t) = vos(t) + ve,ve

to be taken in the oscillating frame from a locally homogeneous and isotropic distribution
function f (ve) = f (ve) for simplicity. As a result the time-dependent collision frequency
νei(t) is obtained. Finally cycle averaging yields νei. The momentum loss 
p in a
single Coulomb collision along v(t) follows from the differential Coulomb cross section
σ� = b2

⊥
/

4 sin4(ϑ/2), b⊥ collision parameter for perpendicular deflection, by integration
over b, with σ the total cross section:


p = mev
b2

⊥
σ

∫ π

ϑ=ε

(1 − cos ϑ) sin ϑ

4 sin4 ϑ
2

dϑ dφ = 4πmev
b2

⊥
σ

ln

(
b2

⊥ + b2
max

)1/2

b⊥
. (4)

The Coulomb logarithm ln
[(

b2
⊥ + b2

max

)1/2/
b⊥

]
is fixed below. From (4) the momentum loss

of an electron per unit time is ṗ = −meνei(v)v = −K/v3v ln �,K = Z2e4ni

/(
4πε2

0me

)
.

The velocity is v = |v| = (
v2

os + v2
e + 2|vos||ve| cos χ

)1/2
(see figure 1 ); νei follows as

νei(t) = 2π
K

mevos(t)

∫ ∞

0

∫ +1

−1

cos χv2
e f (ve) ln �

v2
os + v2

e + 2vosve cos χ
d cos χ dve, (5)

νei = 4π
K

mev̂2
os

∫ ∞

0

∫ +1

−1

vosv

v3
v2

e f (ve) ln � d cos χ dve. (6)

Expressions (5) and (6) are much simpler than (2), however they do not handle (yet) collective
resonances around ω = ωp [2, 7, 8]. The integration over b in ln � runs from b = 0 to
b = bmax. No lower cutoff or ‘distance of the closest approach’ appears; only bmax must be
determined.

2.2. Cutoffs

Let us assume that b⊥ and λB = h̄/mev are well separated from bmax and the Debye length
λD; in addition bmax � b0 separating straight from bent orbits is assumed to be valid, as is the
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Figure 2. Jackson’s model of Coulomb interaction. The particle feels the constant maximum
attraction over the distance 2b and zero force outside. It reproduces the Coulomb cross section.
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Figure 3. νei from DM (solid), BM (squares), dashed lines from (9). ne = 1021 cm−3, ω = 5ωp.

case in the weakly coupled plasma. First bmax is fixed. Under the current conditions Jackson’s
model applies [11], see figure 2. For v̂os/vth � 3 and ω > ωp the time-averaged speed is,
owing to v2 ∼ sin2 ωt, v = v/

√
2. From τint = 2b/v � τLaser/3 follows

2bmax

v/
√

2
= 1

3

2π

ω
	⇒ bmax = v√

2ω
. (7)

The accurateness of this cutoff can be checked by comparing (6) with (2). The outcome will
result very satisfactory (see figure 3). Under the conditions above and w � 1 the differential
cross section in the first Born approximation from the shielded Debye potential applies with
the result b⊥ in ln � to be replaced by bmin = λB/2, if this quantity is larger than b⊥. In
the opposite case, occurring preferentially at low electron temperature the situation is more
complex. As λB depends on the individual particle velocity v, bmin = h̄/2mev is of general
validity [12]. Thus,

ln � = ln
(
b2

max + b2
⊥
)1/2

/bmin, bmax = v/
√

2 max(ω, ωp), bmin = h̄/2mev. (8)

In the literature b = b⊥ or b = λB is generally referred to as a ‘lower cutoff’ bmin. This is
unfortunate and totally misleading.
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Figure 4. The function G(v̂os/vth) and two asymptotes, dashed.

2.3. Averaging procedure for Maxwellian fM(ve)

νei from (6) is evaluated for ne = 1021 cm−3, ω = 5ωp and Te = 100 eV and Te = 1 keV with
ln � from (8), and is compared with νei from (2) (figure 3). There is very good agreement.
For a rough estimate ln � may be replaced by the average ln〈�〉 = ln

(
v̂2

os

/
4 + v2

th

)1/2/
bmin and

treated as a constant, and cos α = 1 may be set, α from figure 1. Then νei simplifies to

νei = K ln〈�〉
mev̂2

os

1

vos(t)

∫ vos(t)

0
4πv2

e fM(ve) dve = K ln〈�〉
mev̂2

os

G(v̂os/vth). (9)

Its evaluation for the parameters of figure 3 yields the two dashed lines. They are by
25–30% too large. It is instructive to replace ln〈�〉 in (9) by the correct value 〈ln �〉 which is
accomplished by equating (9) and (6). The function G(v̂os/vth) is shown in figure 4. There are
also shown the asymptotes proportional to (v̂os/vth)

2 for v̂os < vth and ln(v̂os/vth + 1)/(v̂os/vth)

for v̂os/vth � 3.

3. Discussion and conclusion

The BM has several advantages in comparison to the various versions of the DM. As
figure 3 shows it yields collision frequencies which are nearly identical with the DM values.
The numerical effort to calculate them is by far simpler and quicker. Test calculations show
the same or slightly higher agreement also for laser frequencies ω = 0.5ωp and ω = 1.5ωp.
The simplified version (9) yields analytical formulae in a wide parameter range [6], however
not without loss of exactness (25–30% too large). The next great advantage of the BM is its
physical description of collision events. The extension to strongly coupled plasmas, i.e such
for which b⊥ becomes of the same order of λD, however b⊥ < n

−1/3
e is straightforward in

the BM. In the DM large angle deflections are not included and must be treated separately.
Various aspects that appear paradoxical in the DM find their natural explanation in the BM.
For example, with the natural cutoffs (8) (where only bmax is a real cutoff) and the results of
figures 3 and 4 show that the double logarithms and ln �S in the asymptotic expressions (3) are
merely mathematical approximations without any relationship with physics; the continuous
line in figure 4 may be fitted more exactly by approximations of different mathematical
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structures. The term ln(v̂os/vth) is not produced by shielding. As the dielectric function
ε(k, ω) contains λD = v/ωp and the correct expression for bmax stems from large k values in
the upper limit of the Bessel integrals in (2) one could be tempted to claim that the ‘long
wavelength approximation’ kv̂os/ω � 1 is wrong. However, the BM shows that it is correct
at all frequencies ω. It shows once more that a Fourier decomposition for collisional events
is physically inappropriate. Two clear advantages of the DM are the correct description of
shielding in weakly coupled plasmas and of resonances in νei(ω) around ωp [2, 7, 8].
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